

Distributed Generation, Combined Heat and Power, and Micro-Cogeneration

Prepared by:

Jeffery T. Hinson,PE Director, Utility Services

Presented by:

Dr. Lawrence P. Golan, Director S.C. Institute for Energy Studies (SCIES)

Topics

- Central Utilities
- Distributed Generation and CHP at Clemson
- Industrial Sized Cogeneration
- Micro-Cogeneration
 - » Control Strategies
 - » Results
 - » Targeted Opportunities
- Education/Research Collaboration

Central Utilities

Average Yearly Energy Consumption

- 120,000,000 kWH Electrical Consumption
 - » Supplied by Duke Power (Duke Energy Corp.)
 - » Peak Summer Demand 21 MW
- 400,000,000 lbs. Steam Consumption
 - » Primary Fuels Coal & Natural Gas
 - » Emergency Fuel No. 2 Fuel Oil
- 425,000,000,000 BTU Chilled Water Consumption
 - » 5,400 Tons Electric Centrifugal, 1,000 Tons Absorption CEF
 - » 2,250 Tons Electric Centrifugal East Campus Plant

Existing Assets (10,230 kW)

- SOLAR Taurus 60 Gas Turbine (4800 kW)
 » Inlet Air Cooling + 615kW in Summer
- SOLAR Mercury 50 Gas Turbine (3800 kW)
- Caterpillar Diesel IC Engine (750 kW)
- Caterpillar Diesel IC Engine (300 kW)
- Kohler Diesel IC Engine (550 kW)
- Capstone Microturbine (30 kW)

Distributed Generation - CHP

SOLAR Taurus 60 Gas Turbine Generator

Distributed Generation - CHP

SOLAR Taurus 60 Gas Turbine Generator

Distributed Generation - CHP

ERI Heat Recovery Boiler

SOLAR Mercury 50 Advanced Gas Turbine

SOLAR Mercury 50 Advanced Gas Turbine

Ag/Bio-Tech Emergency Generator

Ag/Bio-Tech Emergency Generator

CEF Emergency Generator

- 300 kW Diesel Generator to Start Taurus 60
- Original Design Uses Automatic Transfer Switches
- Full Capacity Paralleling Gear Upgrade Will Be Added for a Total Cost of \$70,000
 - » Estimated Savings of up to \$20,000 per Year
 - » Limited Runtime (180 hrs/yr.)
 - » Improved Testing, Maintenance, and Operation Due to Generation at Full Load

CEF Emergency Generator

CEF Emergency Generator

Capstone Microturbine CHP

Capstone Microturbine CHP

Capstone Microturbine CHP

- Controls ensure maximum flexibility
 - » Water flow from 6 to 30 GPM
 - » Entering water temperature from 55F to 145F
- Wide variation in system efficiency
 - » 63% at OA=20F and EWT=135F
 - » 92% at OA=85F and EWT=65F
- Highest system efficiency may not be best
 - » Electric cost usually > Heat Costs
- "Plug-and Play" difficult to implement and could produce disappointing results

- Installed Cost of \$47,300 (estimated retail)
 - » Clemson Cost significantly lower due to generous contributions from Capstone and Johnson Controls, in-house engineering, and in-house installation.
- Maintenance costs to date \$2,100 (14,500 hours)
- Availability good. Two engine failures related to bearing failures (replaced under warranty). Possibly related to coal dust. Filter service interval reduced.
- Projected simple payback at average SC commercial rates (\$0.063/kWH & \$0.65/Therm) in 5.2 years
- Projected simple payback at average CA commercial rates (\$0.11/kWH & \$0.62/Therm) in 2.5 years

- Emissions generally 50%-60% of published
 - » NOx virtually undetectable at elevated ambient temperatures and 5 ppm at ISO.
 - » CO − 32 ppm (ISO)
 - » UHC 6 ppm (ISO)
- Permitted as an insignificant source (Title V)
- Noise tends to be concentrated at specific frequencies and some resonances noticed at lower power (lower turbine speed).
- A 4-20ma external kW setpoint would allow thermal load following.

Educational/Research Opportunities

- Existing Metering and Monitoring Capability
- Addition of Metering/Monitoring for a Specific Application or Condition
- Operation of Generation at Specific Given Conditions
- Campus Becomes a Real-Time Laboratory of an Actual Distribution System.
 - » Data Collection Through Ethernet/Internet at Remote Sites
 - » Siting of DG Offerings From Utilities or Energy Services Companies (ESCO's) for Commercialization Testing
 - » Modification of Distribution System to Accommodate Specific Research Conditions
- Student Education

Educational/Research Opportunities

Energy Systems Laboratory

- Promote collaboration between research, education, industry, and operations.
- 8,000 square foot program space.
- Establish partnerships with industry, government, and institutions to advance the relevancy of a Clemson education and fulfill the mission of public service.

Educational/Research Opportunities

DISTRIBUTED ENERGY ROADSHOW Atlanta Regional DOE

STEAM BEST PRACTICES
Alliance to Save Energy/DOE

Questions?

